史丽云课题组在Cell Rep发表端粒缺陷与炎症相关的研究论文

发布时间: 2018-10-16 浏览次数: 2751

众所周知,年龄影响机体免疫系统的功能和炎症反应状态。与年轻人相比,老年细菌性肺炎的发病率和死亡率均显著增加,其潜在的机制有待研究。端粒是染色体末端的DNA序列,对维持人类基因组的稳定至关重要。细胞每分裂一次,端粒就缩短一次,当端粒不能再缩短时,细胞就无法继续分裂而死亡。因此,端粒被称作“生命时钟”,端粒损伤与衰老相关疾病有关,但端粒功能障碍与感染、免疫和炎症有何关系仍有许多未解之谜。最近,南京中医药大学史丽云教授团队在国际期刊Cell Reports刊发了关于“端粒功能失调干扰巨噬细胞线粒体代谢和NLRP3炎症小体活化”的研究论文。

   在这项研究中,研究者利用端粒酶敲除小鼠肺部感染金黄色葡萄球菌的实验模型,来研究端粒功能缺陷对机体免疫和炎症的影响。研究发现,与对照小鼠相比,端粒酶敲除小鼠尽管仍保留有清除病原菌的能力,但其肺部表现出更为强烈的炎症反应和病理损伤,生存率显著下降。进一步的研究表明,端粒功能失调影响巨噬细胞线粒体的形态、结构和功能,使其发生能量代谢失衡。大量释放的线粒体ROS引发NLRP3炎症小体通路的活化和巨噬细胞过度应答,这可能是造成端粒缺损小鼠严重病理损伤的重要原因。

无标题.jpg

课题组进一步探索了端粒缺损影响线粒体代谢的分子机理。研究发现PGC-1α/ERRa/TNFAIP3轴对于调控线粒体和炎症基因表达、维持端粒稳态至关重要。PGC-1α一方面通过与雌激素受体ERRa共同作用促进线粒体功能;另一方面可参与对泛素修饰酶TNFAIP3的表达调控。TNFAIP3通过下调TRAF6K63-泛素化而负调控NF-κB信号通路,参与对NLRP3炎症小体信号的调控,TNFAIP3亦可调控pro-IL-1β泛素化修饰而影响炎症小体通路。

该研究阐明了端粒功能障碍对机体固有免疫和炎症发生的影响,揭示了线粒体代谢通路在端粒功能障碍引起的免疫-炎症失衡中的作用,并阐述了端粒功能障碍引起的代谢-免疫功能紊乱的分子调控机制。鉴于端粒缩短和功能障碍与衰老进程密切相关,该研究也为衰老相关炎症性疾病的防治提供了新的思路和线索。

 

 

【原文标题】

     Telomere Dysfunction Disturbs Macrophage Mitochondrial Metabolism and the NLRP3 Inflammasome through the PGC-1a/TNFAIP3 Axis

 

【原文摘要】

     Immune and inflammation dysregulation have been associated with the aging process and contribute to age-related disorders, but the underlying mechanism remains elusive. Here, we employed late-generation Terc knockout (Terc-/-) mice to investigate the impact of telomere dysfunction on the host defense and function of innate immune cells. Terc-/- mice displayed exaggerated lung inflammation and increased mortality upon respiratory staphylococcal infection, although their pathogen-clearing capacity was uncompromised. Mechanistically, we found that telomere dysfunction caused macrophage mitochondrial abnormality, oxidative stress, and hyperactivation of the NLRP3 inflammasome. The ubiquitin-editing enzyme TNFAIP3, together with PGC-1a, was critically involved in the regulation of mitochondrial and inflammatory gene expression and essential for the homeostatic role of telomeres. Together, the study reveals a regulatory paradigm that connects telomeres to mitochondrial metabolism, innate immunity, and inflammation, shedding light on age-related pathologies.

 

【原文链接】https://doi.org/10.1016/j.celrep.2018.02.071